VIEWPOINT Polymers Reduce Drag

نویسنده

  • Markus Holzner
چکیده

F rictional drag steals energy from a moving fluid, but the loss usually becomes greater as the flow goes from smooth, or “laminar,” to turbulent. The onset of turbulence therefore poses a problem for many situations involving fluid flow through a conduit, be it oil in a giant pipeline, blood in a human aorta, or liquid in a heat exchanger. One established solution is to add a small amount of polymer to the fluid, which reduces drag by suppressing turbulence. Decades of experiments, however, have indicated that this approach reduces drag only down to a certain level, known as the maximum drag reduction (MDR) asymptote. Beyond this limit, adding more polymer has no effect. A team led by Björn Hof [1] at the Institute of Science and Technology in Austria has now uncovered a window of flow conditions under which drag can be reduced beyond the usual MDR limit. Their experiments with water and common polymers also offer a new picture of the fluiddynamical properties associated with MDR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Bio-Based Polymers on Improving Turbulent Flow Characteristics: Materials and Application

The remarkable ability of polymeric additives to reduce the level of frictional drag significantly in turbulent flow, even under extremely low dilutions, is known as turbulent drag-reduction behavior. Several bio-polymers have been assessed as promising drag-reducing agents for the potential replacement of high molecular weight synthetic polymers to improve safety and ameliorate environmental c...

متن کامل

Natural Drag-Reducing Polymers: Discovery, Characterization and Potential Clinical Applications

About seven decades ago, it was discovered that special long-chain soluble polymers added to fluid at nanomolar concentrations significantly reduce resistance to turbulent flow (Toms effect). These so-called drag-reducing polymers (DRPs) do not affect resistance to laminar flow. While the flow parameters associated with the Toms effect do not occur in the cardiovascular system, many later studi...

متن کامل

A Mean Flow Model for Polymer and Fiber Turbulent Drag Reduction

© Appl. Rheol. 15 (2005) 370–389 Abstract: We present a one-parameter model that fits quantitatively the mean velocity profiles from experiments and numerical simulations of drag-reduced wall-bounded flows of dilute solutions of polymers and non-Brownian fibers in the low and modest drag reduction regime. The model is based on a viscous mechanism of drag reduction, in which either extended poly...

متن کامل

Electrical Actuation of Textile Polymer Materials

Polymers used in textiles were found to be effective as actuator materials with large deformation. Particularly, the polymers with low dielectric constants used to be considered inactive to electric field were turned out to be efficient actuator materials. They were classified into three types; (1) polymer gels swollen with solvents, (2) plasticized polymers, (3) bulk polymers. From the viewpoi...

متن کامل

Polymer flexibility and turbulent drag reduction.

Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag reduction is positively correlated to viscous stresses, which are generated by extended polymers. Rod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018